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Inflationary Spectra, Decoherence, and Two-Mode
Coherent States

David Campo1,3 and Renaud Parentani2

We re-examine the question of the entropy stored in the distribution of primordial
density fluctuations. To this end we make use of two-mode coherent states. These
states incorporate the isotropy of the distribution as well as the temporal coherence
and the semi-classical character of highly amplified modes. They also provide a lower
bound for the entropy if, as one expects, decoherence processes erase the quantum
squeezing which originally characterized the distribution in inflationary models. This
lower bound is one half the maximal (thermal) value. By considering backreaction
effects, we also provide an upper bound for this entropy at the onset of the adiabatic
era.
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1. INTRODUCTION

Inflation tells us that the primordial density fluctuations arise from the am-
plification of vacuum fluctuations (Mukhanov and Chibisov, 1981; Starobinsky,
1979a,b). As a result of this amplification, the initial vacuum state becomes a
product of highly squeezed two-mode states (Grishchuk and Sidorov, 1990). In
spite of the complexity of this state, when computing expectation values, i.e.,
the two-point function, the modes exhibit a temporal coherence upon horizon re-
entry. When considering the physics which took place near the recombination, it
is therefore convenient and sufficient to enforce the temporal coherence by putting
to zero the decaying mode. Then the residual random properties consist in treating
the amplitude of the growing mode as a stochastic variable, thereby ignoring the
quantum properties of the original Gaussian distribution.
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However, this simplified description has several drawbacks. In particular the
settings are too restrictive to describe the distribution which would result from
some decoherence process which would have taken place during the early uni-
verse. More generally, the simplified settings are unable to parameterize deviations
from the standard results which preserve the isotropy and the Gaussianity of the
distribution.

In this paper, we show that the appropriate basis to investigate these questions
is provided by two-mode coherent states. The reasons are the following. First, a
two-mode coherent state provides the quantum counterpart of a particular clas-
sical realization of the ensemble of metric fluctuations. This correspondence is
well defined for the highly excited modes we are dealing with (remember that the
observed temperature anisotropies of relative amplitude 10−5 fix the occupation
number n to be of the order of 10100). Second, ensembles of two-mode coher-
ent states can characterize any Gaussian isotropic distribution, thereby allowing
to describe arbitrary levels of coherence. This follows from the requirement of
isotropy and homogeneity which restricts the non-vanishing matrix elements of
the distribution: only two-mode elements with opposite wave vectors could be
different from zero. Third, they allow to make contact with the general remark
of (Zurek, 1993; Zurek et al., 1993) according to which squeezed states rapidly
decay into a statistical mixture of coherent states when small non-linearities are
no longer neglected (Maldacena, 2003). In fact, when applying this general theo-
rem to highly squeezed two-mode states, the resulting distribution is precisely a
diagonal density matrix of two-mode coherent states.

This distribution defines the minimal entropy stored in the primordial spec-
trum (or in other words, the minimal coarse graining) when no quantum squeezing
remains, that is, when there is no longer any direction in phase space in which
the spread of the non-diagonal elements of the density matrix is smaller than that
of the vacuum. For each mode this lower bound is 1/2 the maximal (thermal)
value, given the occupation number. We shall see that this entropy coincides with
that associated with the simplified prescription which consists in neglecting the
decaying mode. It is to be stressed that this identification can be reached because
in the large occupation number limit, the entropy is extremely sensitive to the level
of decoherence whereas the power spectrum is instead extremely robust. Typically
the relative modifications of the latter are 1/n whereas the changes of the former
are in ln n.

The open question concerns the efficiency of decoherence processes in nature:
are they powerful enough to suppress the squeezing that the initial density matrix
possessed? This question is currently under investigation. Preliminary results
indicate that the squeezing is indeed erased, thereby implying that the resulting
entropy is larger than (or equal to) the above mentionned bound.

Finally, we shall also provide an upper bound for this entropy by considering
backreaction effects at the end of the inflationary period. This upper bound is
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given by 3/4 of the maximal entropy. The evaluation of these entropies is exactly
performed by exploiting the fact that any Gaussian isotropic distribution can be
expressed in terms of thermal distributions, see Appendix C.

Related questions have been already analyzed in several papers, see Branden-
berger et al. (1992, 1993); Prokopec (1993); Albrecht et al. (1994); Gasperini and
Giovannini (1993a,b,c); Matacz (1994); Polarski and Starobinsky (1996); Kiefer
et al. (1998a,b, 2000). What we add in the present paper is a further clarifica-
tion of the matters, the usefulness and the relevance of two-mode coherent states,
the lower and upper bounds on the entropy, and relationships between various
elements which have been some how separately discussed.4 Notice that we shall
not discuss the physical relevance of this entropy for structure formation. For this
interesting question we refer to Brandenberger et al. (1992, 1993).

2. A REVIEW OF THE STANDARD DERIVATION
OF PRIMORDIAL SPECTRA

2.1. Quantum Distribution of Two-mode States

In this subsection we recall how the amplification of modes of a mass-
less field propagating in a FRW universe translates in quantum settings in the
fact that the initial ground state evolves into a product of highly squeezed two-
mode states. Before proceeding, we remind the reader that it has been shown
that the evolution of linearized cosmological perturbations (metric and den-
sity perturbations) reduces to the propagation of massless scalar fields in a
FRW spacetime (Mukhanov et al., 1992). In this article, we shall only con-
sider the massless scalar test field since the transposition of the results to
physical fields represents no difficulty. Indeed, when preserving the linearity of
the evolution, the only modification concerns the late time dependence of the
modes.

Let us work in a flat FRW universe. The line element is

ds2 = a(η)2[−dη2 + δij dxidxj ] . (1)

For definiteness and simplicity, we consider a cosmological evolution which starts
with an inflationary de Sitter phase and ends with a radiation dominated period.
When using the conformal time η to parametrize the evolution, the scale factor is

4 Added Note: Since the writing of this paper, we have further analyzed the properties of partially
decohered density matrices. In particular we have established that the above mentioned diagonal
density matrix indeed separates distributions which have lost their quantum properties from those
which have kept them. The results shall be presented in Inflationary spectra and partially decohered
distributions.
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respectively given by

a(η) = − 1

H (η − 2ηr )
, for −∞ < η < ηr , (2a)

a(η) = 1

Hη2
r

η , for η > ηr , (2b)

where ηr > 0 designates the end of inflation. The transition is such that the scale
factor and the Hubble parameter are continuous functions. This approximation
based on an instantaneous transition is perfectly justified for modes relevant for
CMB physics. Indeed, their wave vector k obeys kηr ∼ 10−25 ∼ e−60 when infla-
tion lasts for 60 e-folds. Hence, the phase shift they could accumulate in a more
realistic smoothed out transition is completely negligible.

Let ξ (η, x) be a massless test scalar field propagating in this background
metric. It is convenient to work with the rescaled field φ = aξ and to decompose
it into Fourier modes

φ(η, x) =
∫

d3k
eikx

(2π )3/2
φk(η) . (3)

The time dependent mode φk obeys

∂2
ηφk +

(
k2 − ∂2

ηa

a

)
φk = 0 , (4)

where k = |k| is the norm of the conformal wave vector.
In our background solution, k2 − ∂2

ηa/a is negative during the de Sitter
period when the wavelength is larger that the Hubble radius. This leads to a large
amplification of φk . In quantum terms this mode amplification translates into
spontaneous pair production characterized by correspondingly large occupation
numbers.

To obtain the final distribution of particles, one should introduce two sets of
positive frequency solutions of Eq. (4). The in modes are defined at asymptotic
early time, and the out ones at late time. Both have unit positive Wronskian in
conformity with the usual particle interpretation (Birrel and Davis, 1984). One
gets

φin
k (η) = 1√

2k

(
1 − i

k(η − 2ηr )

)
e−ik(η−2ηr ) , for η < ηr , (5a)

φout
k (η) = 1√

2k
e−ikη , for η > ηr . (5b)

In spite of the time dependence of the background, these two positive frequency
modes are unambiguously defined (up to an arbitrary constant phase which drops
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in all expectation values and which has here been chosen so as to simplify the forth-
coming expressions). In the radiation dominated era there is no ambiguity since
the conformal frequency is constant because ∂2

ηa = 0. In the de Sitter epoch, there
is no ambiguity either for relevant modes if inflation lasts more than 70 e-folds,
see (Niemeyer et al., 2002) for the evaluation of the small corrections one obtains
when imposing vacuum at some finite early time. Similarly, in quantum settings,
there is no ambiguity for the initial state of relevant modes: at the onset of inflation
they must be in their ground state (Mukhanov et al., 1992; Parentani and Physique,
2003).

The in and out modes are related by a Bogoliubov transformation

φin
k (η) = αkφ

out
k (η) + β∗

k φout ∗
k (η) , (6)

where the Bogoliubov coefficients are given by the Wronskians

αk = (
φout

k , φin
k

)
, β∗

k = −(
φout ∗

k , φin
k

)
. (7)

These overlaps should be evaluated at transition time ηr since modes satisfy
different equations in each era. One gets

αk = − e2ikηr

2k2η2
r

(
1 − 2ikηr − 2k2η2

r

) = −1

2k2η2
r

(1 + O(kηr )3) , (8a)

β∗
k = 1

2k2η2
r

. (8b)

Thus, for relevant modes, kηr ∼ 10−25, the in modes are enormously amplified.
Concomitantly, they are dominated by the sine during the radiation dominated era

φin
k (η) = i

k2η2
r

[
sin kη√

2k
+ O(kηr )3 cos kη

]
, η ≥ ηr . (9)

Once the cosine in Eq. (9) is neglected, the physical modes φin
k /a show the same

temporal behaviour, e.g., they are constant until they start oscillating as they
re-enter the Hubble radius when kη � 1.

Lets now see how these considerations translate in second quantized settings.
Each mode operator is decomposed twice

φ̂k(η) = â
j

kφ
j

k (η) + â
j †
−kφ

j ∗
k (η) , (10)

where j stands for both the in and out basis. The operators so defined are
related by the transformation

âin
k = α∗

k âout
k − βk â

out †
−k . (11)

This transformation couples k to −k only. Hence, when starting from the in vacuum
(the state annihilated by the âin

k operators), every out particle of momentum k will
be accompanied by a partner of momentum −k. Moreover, pairs characterized
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by different momenta are incoherent (in the sense that in expectation values any
product of annihilation and creation operators of different momenta will factorize).

These two properties are explicit when writing the in vacuum in terms of out
states (i.e., states with a definite out particle content). From Eq. (11), one gets (see
Brandenberger et al., 1992, 1993; Brout et al., 1995)

|0, in〉 =
∏̃

k

⊗ |0, k, in〉2

=
∏̃

k

⊗
(

1

|αk| exp
(
zk â

out †
k â

out †
−k

)|0, k, out〉 ⊗ |0, −k, out〉
)

. (12)

The tilde tensorial product takes into account only half the modes. It must be
introduced because the squeezing operator acts both on the k and the −k sectors.
The definition of this product requires the introduction of an arbitrary wave vector
to divide the modes into two sets. The sign of kz can be used. Notice that a rigorous
definition of

∏̃
k requires to consider a discrete set of modes normalized with

Kronekers (that is, to normalize the modes in a finite conformal three-volume). To
be explicit, the two-mode state |0, k, in〉2 is given by

|0, k, in〉2 = |0, k, in〉 ⊗ |0, −k, in〉 , (13)

where |0, k, in〉 is the ground state of the k-th mode at the onset of inflation. The
complex parameter zk appearing in the squeezing operator in Eq. (12) is given by
the ratio of the Bogoliubov coefficients

zk = βk

α∗
k

= −e−2ikηr
1(

1 + i2kηr − 2k2η2
r

)
= −1 + O(kηr )3 . (14)

The high occupation number limit corresponds to |zk| → 1−.
It has to be emphasized that none of the out states in Eq. (12) carry three-

momentum. Hence, the distribution is homogeneous in a strong sense: at late time
the three-momentum operator is still annihilated by the state of Eq. (12). (This
property is not satisfied by incoherent distributions such as thermal baths. In those
cases, the three-momentum fluctuates and vanishes only in the mean). The present
distribution is also isotropic since the Bogoliubov coefficients are functions of the
norm k only. Finally, it is a Gaussian distribution, as can be seen from Eq. (12).

To appreciate the peculiar properties of the distribution of Eq. (12) it is inter-
esting to consider the most general homogeneous, isotropic, and Gaussian distri-
bution of out quanta. Its properties are completely specified by three real functions
of the norm k (one real and one complex) through the following expectation values〈

âout
k

〉 = 0 , (15a)
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〈
â

out †
k âout

k′
〉 = nk δ3(k − k′) , (15b)〈

âout
k âout

k′
〉 = ck δ3(k + k′) . (15c)

In the second line, nk is the mean occupation number. In the third one, the com-
plex number ck characterizes the quantum coherence of the distribution. The
degree of two-mode coherence is given by |ck|/(nk + 1/2), see Appendix C. It
is bounded by 1. For a thermal (incoherent) distribution, one has ck ≡ 0: no
two-mode coherence.

In the case of pair production from vacuum, one has

nk = |βk|2 = |zk|2
1 − |zk|2

,

ck = αkβk = zk

1 − |zk|2
. (16)

Therefore, when considering relevant modes in our inflationary model Eq. (8), one
has

nk = 1

4(kηr )4
� 10100 ,

|ck|
nk + 1/2

= 1 + O(kηr )3 . (17)

That is, the distribution which results from inflation is highly populated and, more
importantly, maximally coherent. When computing the Green function, the two-
mode coherence of the distribution will manifest itself in the temporal coherence
of the modes.

2.2. Two-Point Function and the Neglect of the Decaying Mode

When expressed in terms of out modes, the two-point function associated
with the general distribution specified by Eqs. (15) is

G(η, x, η′, x′) = Gout(η, x, η′, x′)

+
∫ ∞

0

dkk2

π2

sin(k|x − x′|)
k|x − x′|

×2Re
[
nk φk(η)φ∗

k (η′) + ck φk(η)φk(η′)
]
. (18)

In the first line, we have isolated Gout, the contribution of the out vacuum. In the
high occupation number limit, this contribution is negligible.

It is important to notice that, for a general distribution, the sum in bracket
in the above integrand cannot be factorized. However it does factorize in two
cases which are relevant for us: first, for coherent states, see Appendix A, and
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second for distributions resulting from pair production from vacuum. Indeed,
when considering our cosmological model, taking into account the minus sign of
Eq. (14), and neglecting correction terms in O(kηr )3 (which amounts to neglect
the decaying mode, see Eq. (9)), one obtains

Gin(η, x, η′, x′) =
∫ ∞

0

dkk2

π2

sin(k|x − x′|)
k|x − x′| nk

sin kη√
k

sin kη′
√

k
. (19)

As announced, the integrand in Eq. (18) factorizes. In inflation, the function which
appears is sin kη where η is related to the scale factor by Eq. (2a). This is how
the temporal coherence of modes obtains from the two-mode coherence of the
distribution.

Once the cosine is neglected, the quantum distribution is effectively replaced
by a stochastic Gaussian distribution of classical fluctuations

φk(η) = Sk
sin kη√

k
, (20)

with locked temporal argument, and random amplitudes with variances given by

〈〈 SkS
∗
k′ 〉〉eff = 〈〈 SkS−k′ 〉〉eff = 2nk δ(3)(k − k′) . (21)

Being Gaussian, the effective probability distribution is simply

Peff =
∏̃

k

1

2nk

exp

(
−|Sk|2

2nk

)
. (22)

To avoid double counting, one must again use the tilde product which takes into
account half the modes only, as was done in the quantum distribution of Eq. (12).
This counting becomes crucial when computing the entropy, see Section 3.3.
Notice also that the first equality in Eq. (21) is simply the expression of the
reality of the field φ(η, x). This was not the case when noticing that inflation
gives 〈âout †

k âout
k′ 〉 = −〈âout

k âout
−k′ 〉(1 + O(kηr )3) for the quantum field operators. In

that case the equality is the expression of the coherence of the in vacuum, i.e.,
the absence of three-momentum fluctuations and the possibility of factorizing the
two-point function by discarding the cosines.

2.3. Additional Remarks

First we remind the reader why a random distribution of both the sine and the
cosine does not give rise to any temporal coherence (Grishchuk and Sidorov, 1990).
In fact such a distribution corresponds to an incoherent (thermal) distribution.

Writing the field modes as the sum of a sine and a cosine

φ̂k = âout
k φout

k + â
† out
−k φout ∗

k

= Ĉk
cos(kη)√

k
+ Ŝk

sin(kη)√
k

. (23)
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It is to be noticed that the operators Ĉk and Ŝk are proportional to the field mode
operator and its conjugate momentum evaluated at η = 0, as if there were no
inflation

Ĉk = 1√
2

(
âout

k + â
† out
−k

) =
√

k φ̂k(0) ,

Ŝk = −i√
2

(
âout

k − â
† out
−k

) = 1√
k

∂ηφ̂k(0) . (24)

They satisfy the canonical equal time commutation relations.
Consider an incoherent (ck = 0) distribution

〈â†
kâk′ 〉inc = nk δ3(k − k′) , 〈âkâk′ 〉inc = 0 . (25)

Then Ĉk and Ŝk are uncorrelated Gaussian operators with equal variance

〈ĈkĈ
†
k′ 〉inc = 〈ŜkŜ

†
k′ 〉inc =

(
nk + 1

2

)
δ3(k − k′) ,

〈ĈkŜk′ 〉inc = 0 . (26)

This implies the absence of temporal coherence of the modes, as can be seen
from the temporal behaviour of the bracket in the integrand of Eq. (18): when
η = η′ the bracket does not exhibit any oscillation in k as it did for the inflationary
distribution. [This absence can also be understood by considering the Sk and Ck

as stochastic variables rather than quantum ones. Writing the mode in terms of its
norm and its phase (Grishchuk and Sidorov, 1990; Allen et al., 2000)

φk = 	k sin(kη + θk) . (27)

one can treat 	k and θk as stochastic variables. One then verifies that the distri-
bution for the phase θk is uniform over the interval [0, 2π ]. Hence, no temporal
coherence could obtain.]

As a last remark, to estimate what has been neglected when discarding the
cosine in Eq. (20), we compute the residual fluctuations of Ĉk and the cross
correlation ĈkŜk. To leading order in nk , one has

〈ŜkŜ
†
k′ 〉in =

(
nk + 1

2
− Re(ck)

)
δ3(k − k′) = 2nk δ3(k − k′) ,

〈ĈkĈ
†
k′ 〉in =

(
nk + 1

2
+ Re(ck)

)
δ3(k − k′) = O

(
n

−1/2
k

)
δ3(k − k′) ,

〈ĈkŜ
†
k′ 〉in = −

(
Im(ck) + i

2

)
δ3(k − k′) = O

(
n

1/4
k

)
δ3(k − k′) . (28)

When divided by the variance of Ŝk, the variance of Ĉk and the cross-correlation
are of order n−3/2 and n

−3/4
k ∼ (kηr )3 ∼ 10−75 respectively. One can therefore
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safely use the distribution Eq. (22) in replacement of the quantum distribution
Eqs. (12) or (28) when calculating the power spectrum. However, this is not the
case for the entropy.

2.4. Drawbacks of the Simplified Description

The simplified description in terms of a statistical ensemble of sine standing
waves has indeed several shortcomings. It is of value to describe them with some
attention.

First, it should be pointed out that in the early universe, different physical
processes could give rise to different final density matrices, and hence, to different
entropies. As we shall see below, only a narrow set of these quantum distributions
can be put in correspondence with that of Eq. (22). To describe the most general
isotropic and Gaussian distribution, it is necessary to return to two-mode distri-
butions characterized by nk and ck of Eq. (15). Second, the classical ensemble
of sine waves should be considered only as an effective description of the den-
sity matrix. The appropriate basis to describe this matrix is provided by coherent
states. The reasons are the following. On the one hand, they constitute the quantum
counterparts of classical configurations in phase space. Therefore, they provide an
adequate basis for studying the semi-classical limit. In particular, since the spread
of coherent states have no preferred direction in phase space, it will be easy to see
whether or not a distribution has kept some squeezing. On the other hand, they are
the preferred basis in which squeezed states decohere when weak interactions are
taken into account (Zurek et al., 1993).

3. TWO-MODE COHERENT STATES

When using coherent states in cosmology, one must pay attention to the
entanglement between k and −k modes. A naive use of coherent states which
would assign amplitudes to each mode separately could erase these correlations
and therefore suppress the information about the temporal phase of the modes.
Taking into account the entanglement leads to the notion of “two-mode coherent
states.”

3.1. Representation of the in Vacuum with Two-Mode Coherent States

To understand the usefulness of two-mode coherent states it is appropriate to
first mention the following properties (Campo and Parentani, 2004). Consider a
mode k in a coherent state |v, k〉 constructed with out operators, see Appendix A
for its definition. Then compute the one-mode reduced state obtained by projecting
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it on the two-mode initial vacuum of Eq. (13)

〈v, k|0 in, k〉2 = Ak(v) |zkv, −k〉 . (29)

It is remarkable that the state of the −k mode which is entangled to |v, k〉 is
also a coherent state. Its amplitude is given by the complex conjugate of v times
zk characterizing the pair creation process. These facts follow from the EPR
correlations in the initial vacuum displayed in Eq. (12). The prefactor Ak(v) is

Ak(v) = 1

|αk| exp

(
− |v|2

2|αk|2
)

. (30)

It is the probability amplitude to find the mode k in the coherent state |v, k〉 given
that we start with vacuum at the onset of inflation.

Using the representation of the identity with coherent states, Eq. (A.13),
the two-mode in vacuum can be thus decomposed as a single sum of two-mode
coherent states rather than two independent integrations over one-mode coherent
states. In fact we have

|0 in, k〉2 =
∫

d2v

π
Ak(v) |v, k〉 ⊗ |zkv

∗, −k〉 . (31)

This result is exact5 and applies even for low occupation numbers. It is the
consequence of the coherence of the in vacuum and holds for every homogeneous
pair creation process.

Another important consequence of Eq. (29) is that the probability to find si-
multaneously the k-mode with coherent amplitude v and its partner with amplitude
w is

P2, k(v,w) = |〈v, k|〈w, −k|0 in, k〉2|2 = |Ak(v)|2 × e−|w − zkv
∗|2

. (32)

The second factor arises follows from the overlap between two different coherent
states: |〈u|v〉|2 = exp(−|u − v|2). Equation (32) implies that once the amplitude
of the k-mode has been measured, the conditional probability to find its partner in
a coherent state |w〉 is centered around w = zkv

∗. In the high occupation number
limit we are dealing with, the spread (=1) around this mean value is negligible
when compared to the spread in v which is given by |αk|2 = nk + 1. Therefore,
when computing expectation values in leading order in nk , the conditional proba-
bility acts as a delta function on both the real and the imaginary part of w. This is
how the EPR correlations in the in-vacuum translate in the coherent states basis.
This result determines the properties of the local correlations in the primordial
spectra (Campo and Parentani, 2004).

5 Notice however that the above decomposition is not unique since the coherent states are not orthog-
onal, compare with Jeong et al. (2000). Equation (31) has the advantage to be directly related to the
detection of a quasi-classical configuration in the k sector.
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To complete this analysis, and in preparation for studying decoherence, it
is also interesting to explicitly write the non-diagonal matrix elements of the in
vacuum density matrix. One has

〈v|〈w|ρ̂in|v′〉|w′〉 = A2, k(v,w)A2, k(v′, w′)∗ , (33)

where the two-mode amplitude is

A2, k(v,w) = Ak(v) e− 1
2 |w − zkv

∗|2

ei Im(w∗zkv
∗) . (34)

Since the initial vacuum is a pure state and since |αk|2 � 1, the above matrix ele-
ments do not vanish, even for macroscopically different coherent states. Therefore
this distribution does not describe a classical ensemble of these quasi-classical
states. Fortunately, such quantum distributions are unstable to any weak perturba-
tion in that they rapidly evolve into statistical mixtures. Let us now describe this
decoherence process.

3.2. Zurek et al. Analysis and Minimal Decoherence Scheme

In general, it is a difficult question to determine into what mixture an initial
density matrix will evolve when taking into account some interactions amongst
modes or with other modes. There exist however several cases where clear con-
clusions can be drawn. First, when one can neglect the free Hamiltonian, the
preferred states (that is the basis into which the reduced density matrix will be-
come diagonal) are the eigenstates of the interaction Hamiltonian (Gottfried, 1966;
Zurek, 1981, 1982). This approach has been applied in Kiefer et al. (1998a,b),
to primordial density fluctuations when the (physical) modes are almost constant
because their wave length is much larger than the Hubble radius. The conclusion
is that the preferred basis is provided by amplitude (position) eigenstates. How-
ever this conclusion leaves some ambiguity and might lead to some difficulties.
First, position eigenstates are not normalized. Second, and more importantly, the
spread in momentum is infinite for these states. Therefore, the velocity field would
not be well defined when the modes re-enter the horizon. Moreover, as pointed
out in Kiefer et al. (2000), some additional decoherence could be obtained as
they re-enter the horizon. In this case, the momentum should be treated in the
same footing as the position. To cure these problems, some finite spread in po-
sition should be introduced. One then needs a physical criterion to choose this
spread.

To remove this ambiguity and to avoid the problem of an excessive spread
in momentum, it is appropriate to appeal to coherent states both for mathematical
and physical reasons. In this article, we shall only present the basic mathematical
results. We reserve for a forthcoming publication the justification of the phys-
ical relevance of these states in a cosmological context. Let us simply notice
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the following points. In inflationary cosmology, modes are weakly interacting
harmonic oscillators (Maldacena, 2003). Indeed, given that the relative density
fluctuations have small amplitude (∼10−5), the hypothesis of weak interactions is
perfectly legitimate. Second, coherent states provide the basis in which the den-
sity matrix decoheres when considering weakly interacting harmonic oscillators.
This has been shown by Zurek et al. (1993). The criterion they used to reach
this conclusion is the minimization of the growth of entropy in the course of the
evolution. With this criterion, coherent states are more stable than squeezed states
in that the growth of entropy one obtains when they are used as initial states
is much slower. Hence, when starting with a squeezed state, there is a phase of
rapid growth of the entropy which sends the system into a mixture of coherent
states and which is followed by a period of slower increase. The entropy growth
is in fact directly related to the decay of the squeezing. Since it is unlikely that
the interactions in the early cosmology could be sufficiently weak so as to keep
some squeezing, we can use the following mathematical result to infer that the
actual entropy of the final distribution should be higher than (or equal to) a certain
bound.

Coherent states indeed define a minimal decoherence scheme in the following
sense. Consider the set of final distributions which result from the initial distribu-
tion of Eq. (33) through some decoherence process and which no longer possess
any squeezed direction. The lowest value of the entropy in this set is given by the
entropy of the incoherent superposition of coherent states, with statistical weights
given by the probabilities to find the corresponding coherent states, as in Eq. (32).
This distribution gives a lowest entropy simply because coherent states have min-
imal constant spreads (given quantum uncertainties and when considering free
evolution, see Appendix A). We shall now explicitely write down this distribution
and compute the entropy it carries.

3.3. Application to Cosmology

When considering the initial distribution Eq. (33), one obtains the following
density matrix:

ρ̂min =
∫

d2v

π

d2w

π
P2, k(v,w) |v, k〉〈v, k| ⊗ |w, −k〉〈w, −k| , (35)

where the probability distribution is given in Eq. (32). In Appendix B we show that
Eq. (35) is indeed the resulting normalized distribution. The technical point which
requires clarification is the extension of the above mentionned minimal scheme to
two-mode squeezed states.

It should first be noted that when computing expectation values in leading
order in nk , the above distribution can be simplified and written as a single sum of
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two-mode coherent states, as in Eq. (31)

ρ̂min �
∫

d2v

π
|Ak(v)|2 |v, k〉〈v, k| ⊗ |zv∗, −k〉〈zv∗, −k| . (36)

As we shall progressively see, this distribution should be conceived as the quantum
counterpart of the effective distribution of sine functions discussed in Section 2.2.

Secondly by reducing the density matrix, some entropy has been introduced.
One verifies indeed that Tr(ρ̂2

min) < 1. The important point is that this decohered
distribution has retained all the information about the temporal coherence of the
modes. Indeed, one has

Tr(ρ̂minâkâ−k) =
∫

d2v

π

d2w

π

[
P2, k(v,w) v w

]
=

∫
d2v

π

[|Ak(v)|2v (zkv
∗)

] = zk|αk|2 ,

Tr(ρ̂minâ
†
kâk) = Tr(ρ̂minâ

†
−kâ−k) = |αk|2 = nk + 1 . (37)

The first line shows that the cross term is equal to that of the original distribution,
see Eqs. (15, 16). In the second line, one sees that the occupation numbers slightly
differ, but to order 1/nk only.

The effect of having increased by 1 the occupation number while having
kept untouched the cross-correlation means two things. First, the (relative) degree
of coherence has been reduced and therefore some entropy has been created.
Secondly, in the high occupation limit, the two-point function of Eq. (18) is not
affected by this loss of coherence: for relevant modes, the relative change being
of the order of 1/nk ∼ 10−100.

3.4. Minimal Entropy and the Neglect of the Decaying Mode

The entropy of any Gaussian two-mode distribution can be exactly calculated
(Joss and Zeh, 1985; Serafini et al., 2004) by using the fact that the density matrix
of a two-mode squeezed state is unitarily equivalent to the tensorial product of
two thermal density matrices of oscillators, see Appendix C. We shall name a and
b these two real oscillators. One has

ρ̂2, k = M† ρ̂th, a ⊗ ρ̂th, b M , (38)

where M is a unitary operator acting on the two-mode Hilbert space. The expres-
sion of the (von Neumann) entropy immediately follows:

S[ρ̂2, k] = S[ρ̂th, a] + S[ρ̂th, b] , (39)
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where the entropy of a thermal bath with mean occupation n̄ is

S [ρ̂th] = (n̄ + 1) ln(n̄ + 1) − n̄ ln(n̄) . (40)

When considering only distributions preserving homogeneity and isotropy, the
occupation numbers of the thermal matrices are equal and given by

n̄k + 1

2
=

((
nk + 1

2

)2

− |ck|2
)1/2

, (41)

where nk and ck are defined in Eq. (15).
Let us apply this result to several cases. First, for the two-mode in vacuum of

Eq. (12), the occupation number and the coherence term are related by Eq. (16),
one has n̄k = 0 as expected. Hence, the entropy vanishes.

For the decohered matrix Eq. (35), using Eq. (37), the occupation number of
the two thermal baths are

n̄k = 1

2

( − 1 +
√

8(nk + 1) + 1
) ∼

√
2nk , (42)

where the last term is the leading order when nk � 1. The two-mode entropy of
this mixture is then

S [ρ̂min] = 2 S [ρ̂th] = 2 ln n̄k + O(1) ,

= ln nk + O(1) = 2 rk + O(1) ,

� 100 ln(10) . (43)

In the second line, we have expressed the occupation number in term of the
squeezing parameter rk : nk = sh2rk . Hence, a two-mode squeezed vacuum state
which decoheres in the two-mode coherent basis goes along with an entropy of
Sk, −k = 2 rk per two-mode. This value is large, but not maximal. Indeed, had
the coherence term ck vanished while keeping the occupation numbers fixed
(Brandenberger et al., 1992, 1993), one would have found the maximal value of
the entropy which is given by twice this above value, i.e.,

Smax
k, −k = S inc

k,−k = 4 rk , (44)

or S inc
k = 2 rk per mode k.
It is interesting to notice that the entropy associated with the Gaussian dis-

tribution Eq. (22) of sine functions equals that of Eq. (35), up to an arbitrary
constant which arises from the usual ambiguity of attributing an entropy to a clas-
sical distribution (this ambiguity can be lifted when introducing h to normalize
the phase space integral). Using this trick, the entropy associated with Eq. (22) is
Seff = 2 rk for each independent mode, since this entropy is maximal. However,
for each independent mode here means for each two-mode since the mode −k is
no longer independent of the k mode once the cosines have been neglected, see
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Eq. (21). ¿From this equality of entropies, we conclude thatthe quantum density
matrix which corresponds to the Gaussian ensemble of sine functions is precisely
given by Eq. (35).

A priory one might think that many quantum distributions can be associated
with the classical distribution Eq. (22). This is not the case when imposing that
Gaussianity is preserved and that the entropies coincide. Indeed, in the high squeez-
ing limit, the entropy is an extremely sensitive function of the relative coherence.
To see this dependence, let us calculate the entropy of a generic distribution (15),
and let us write the norm of the coherence term as

|ck|2 = nk(nk + 1 − δk) , (45)

where δk is a real number between 0 and nk + 1. Equation (41) has the so-
lution n̄(n̄ + 1) = nkδk . They are three characteristic values. δk = 0 obviously
corresponds to the pure squeezed state: the in vacuum. δk = 1 corresponds to
the minimal decoherence scheme with entropy given in Eq. (43). δk = nk + 1
corresponds to the thermal case with maximum entropy. From this analysis we
see that the uncertainty in the definition of the quantum distributions which give
rise to the entropy Sk,−k = 2rk is very limited: δk must be of order 1 in the fol-
lowing sense. Consider that the loss of coherence scales as δk ∝ n

γ

k . Then the
thermal occupation number and the entropy respectively scale as n̄k ∝ n

(1+γ )/2
k

and Sk, −k = (1 + γ )2rk + Const. This linear dependence in rk implies that the
distributions with entropy given by Eq. (43) all have γ = 0.

We re-emphasize that a value of δk smaller than 1 is unlikely in the context of
primordial fluctuations since it would mean that the distribution has kept some of
its quantum squeezeness. The remaining question thus concerns the computation
of δk , noticing that it can receive contributions both from the inflationary period
and from the adiabatic era (Kiefer et al., 2000). The challenge is to determine
which one is more important and what could be a realistic value of δk .

As a final comment, we provide an upper bound for the decoherence entropy
which could have resulted from processes in the inflationary phase. Because
increasing the decoherence implies increasing the power of the growing mode,
one obtains a bound on the decoherence level when requiring that the power
of the decaying mode be equal to that of the growing mode at the onset of the
adiabatic era. (This requirement follows from the fact that the rms value of the
primordial fluctuations (of the Bardeen potential) cannot be much higher than
that obtained from in vacuum because otherwise this would invalidate the whole
framework of linear metric perturbations.) Using Eq. (18) evaluated at ηr and the
parameterization of Eq. (45), one obtains

δk = n
1/2
k , S

upper
k,−k = 3rk + O(1) . (46)

If no further decoherence is added in the adiabatic area, this should be the maximum
amount of entropy stored in the primordial spectrum. Notice that when evaluated
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at recombination, the two-point function is still unaffected by this modification of
the coherence because at that time the decaying mode has still further decreased.
Indeed the residual modifications are then of the order of n

−1/2
k ∼ 10−50.

APPENDIX A: COHERENT STATES

This appendix aims to present the properties which we shall use in the body
of the manuscript. For more details, we refer to Glauber (1963a,b) and Zhang
(1990).

Coherent states (of a real oscillator) can be defined as eigenstates of the
annihilation operator:

â|v〉 = v|v〉 , (A.1)

where v is a complex number. In Fock basis it is written as

|v〉 = e− |v|2
2

∞∑
n=0

vn

√
n!

|n〉 , (A.2)

where the exponential prefactor guarantees that the state is normalized to unity
〈v|v〉 = 1. They are also obtained by the action of a displacement operator on the
vacuum :

|v〉 = D̂(v)|0〉 = ev∗â−vâ†
. (A.3)

The first interesting property of coherent states is that they correspond to
states with a well-defined complex amplitude v. Indeed, by definition (A.1), the
expectation values of the annihilation and creation operators are

〈v|â|v〉 = v , 〈v|â†|v〉 = v∗ . (A.4)

Thus the mean occupation number is

〈v|â†â|v〉 = |v|2 . (A.5)

It is to be also stressed that the variances vanish:

â2 = 〈v|â2|v〉 − 〈v|â|v〉2 = 0 ,

â† 2 = 〈v|â† 2|v〉 − 〈v|â†|v〉2 = 0 . (A.6)

¿From these properties one sees that the expectation values of the position
and momentum operators (in the Heisenberg picture)

q̂(t) =
√

h

2ω
(âe−iωt + â†eiωt ) , p̂(t) = −i

√
hω

2
(âe−iωt − â†eiωt ) ,
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are

q̄(t) = 〈v|q̂(t)|v〉 =
√

h

2ω
(ve−iωt + v∗eiωt ) =

√
2h

ω
|v| cos(ωt − φv) ,

p̄(t) = 〈v|p̂(t)|v〉 = −i

√
hω

2
(ve−iωt − v∗eiωt )

= −
√

2hω|v| sin(ωt − φv) = ∂t q̄(t) . (A.7)

We have used the polar decomposition v = |v|eiφv . These expectation values
have a well defined amplitude and phase and follow a classical trajectory of the
oscillator. This is due to the “stability” of coherent states under the evolution of the
free Hamiltonian 2H0 = p2 + ω2q2: if the state is |v〉 at time t0, one immediately
gets from (A.2) that at a later time t , the state is given by |v(t)〉 = |ve−iω(t−t0)〉.
Notice that the variances of the position and the momentum are

q̂2 = h

2ω
, p̂2 = hω

2
. (A.8)

They minimize the Heisenberg uncertainty relations and are time-independent.
Hence, in the phase space (q, p), a coherent state can be considered as a unit
quantum cell 2πh in physical units (see also (A.14) for the measure of in-
tegration over phase space) centered on the classical position and momentum
of the harmonic oscillator (q̄(t), p̄(t)). In the large occupation number limit
|v| � 1, coherent states can therefore be interpreted as classical states since
q̂/

√
q̄2 + p̄2/ω2 = p̂/

√
ω2q̄2 + p̄2 = 1/2|v|. This is a special application of

the fact that coherent states can in general be used to define the classical limit of
a quantum theory, see (Zhang, 1990) and references therein.

One advantage of coherent states (Glauber, 1963a) is that the calculations of
Green functions resembles closely to those of the corresponding classical theory
(i.e., treating the fields not as operators but as c-numbers) provided either one uses
normal ordering, or one considers only the dominant contribution when |v| � 1.
We compute the Wightman function in the coherent state |v〉

G̃v(t, t ′) = 〈v|q̂(t)q̂(t ′)|v〉

= 〈: q̂(t)q̂(t ′) :〉v + h

2ω
eiω(t−t ′) , (A.9)

where we have isolated the contribution of the vacuum. The normal ordered
correlator is order |v|2:

〈: q̂(t)q̂(t ′) :〉v = h

ω
Re

[〈â2〉ve−iω(t+t ′) + 〈â†â〉veiω(t−t ′)]
= 2h

ω
|v|2 cos(ωt − φv) cos(ωt ′ − φv) = q̄(t) q̄(t ′) . (A.10)
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We see that the perfect coherence of the state, namely |〈ââ〉v| = 〈â†â〉v is necessary
to combine the contributions of the diagonal and the interfering term so as to bring
the time-dependent classical position q̄(t) in Eq. (A.10).

The wave-function of a coherent state in the coordinate representation is
given by

ψv(q) =
( ω

πh

)1/4
exp

(
− ω

2h
(q − q̄)2 − i

p̄q

h

)
, (A.11)

where v = (ωq̄ + ip̄)/
√

2ωh. This follows from the definition 〈q|â|v〉 = v〈q|v〉.
From this equation one notes that two coherent states are not orthogonal. The
overlap between two coherent states is

〈v|w〉 = exp

(
v∗w − 1

2
|v|2 − 1

2
|w|2

)
. (A.12)

Nevertheless they form an (over)complete basis of the Hilbert space in that the
identity operator in the coherent state representation {|v〉} reads

1 =
∫

d2v

π
|v〉〈v| . (A.13)

The measure is

d2v

π
= d(Rev)d(Imv)

π
= dq̄dp̄

2πh
. (A.14)

The representation of identity can be established by calculating the matrix elements
of both sides of the equality in the coordinate representation {|q〉}, with the help
of (A.11).

APPENDIX B: APPLICATION OF ZUREK & AL. RESULTS
TO THE COSMOLOGICAL CASE

In this appendix we show that Eq. (33) is indeed the minimal decohered
distribution by decomposing the complex mode φ̂k into two real oscillators φ̂1

and φ̂2 given by its real and imaginary parts. Since the two-mode Hamiltonian is
Hermitian, it splits into the sum of two identical one-mode oscillator Hamiltonians
for φ̂1 and φ̂2 separately. Notice that the annihilation operators of these two
real oscillators, â1 = (âk + â−k) /

√
2, â2 = −i (âk − â−k) /

√
2, mix k and −k

annihilation operators. Hence, they can easily take into account the entanglement
between these two modes.

A two-mode squeezed state |0 in, k〉2 can always be written as the tensorial
product of the two one-mode squeezed states (Schumaker and Caves, 1985). In
our case, the one-mode squeezed states are those of the oscillators 1 and 2 because
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the Hamiltonian separates. Thus, we have

|0 in, k〉2 = |0 in, 1〉 ⊗ |0 in, 2〉 . (B.1)

The one-mode squeezed states are governed by the same parameter z/2 :

|0 in, 1〉 = 1√|α|
∞∑

n=0

( z

2

)n
√

2n!

n!
|2n, 1〉 . (B.2)

The same expression holds for the ket |0in, 2〉.
The overlap of this one-mode squeezed state with a one-mode coherent state is

〈v, 1|0 in, 1〉 = 1√|α| exp
(−|v1|2/2 + zv∗ 2

1 /2
)

. (B.3)

According to (Zurek et al., 1993), when taking small interactions into account,
the density matrix of a one-mode squeezed state will preferable decohere into the
mixture

ρ̂red, 1 =
∫

d2v1

π
P1(v1) |v1〉〈v1| . (B.4)

where the statistical weight is given by the probability to find a coherent state
starting from the in vacuum:

P1(v1) = |〈v, 1|0 in, 1〉|2 = 1

|α| exp
(−|v1|2 + Re

(
zv∗ 2

1

))
,

= 1

|α|e
−2R2

1 e
−I 2

1 /2|α|2 + O

(
n−3/4R1I1

)
. (B.5)

In the second line we have introduced the real and imaginary parts of v1 in order
to show that one gets an ellipse of great axis equal to |α|2 which is oriented along
the imaginary axis. The width of the small axis is 1/2, as in vacuum.

For this decoherence procedure to be valid, as noticed in (Kiefer et al.,
1998a,b), it is important that the interactions do not break the coherence between
k and −k modes, or equivalently do not mix φ1 and φ2.

The product of two one-mode coherent states 1 and 2 is also the product of a
coherent state for the k and −k modes:

|v1〉 ⊗ |v2〉 = D̂1(v1)D̂2(v2)|0 in, 1〉 ⊗ |0 in, 2〉 ,

= D̂k(v)D̂−k(w)|0 in, k〉 ⊗ |0 in,−k〉 ,

= |v, k〉 ⊗ |w,−k〉 , (B.6)

where the amplitudes are related by

v = v1 + iv2√
2

, w = v1 − iv2√
2

. (B.7)
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Finally, the product of the probabilities (B.5) give the probability (32). Performing
the change of variables from (v1, v2) to (v, w) completes the proof.

APPENDIX C: DIAGONALIZATION OF THE COVARIANCE MATRIX

Introducing the position and momentum variables for each mode, i.e., âk =
(q̂k + ip̂k)/

√
2 and â−k = (q̂−k + ip̂−k)/

√
2, and defining the vector

ζ † = (q̂k p̂k q̂−k p̂−k) , (C.1)

one has the covariance matrix

C = 〈[ ζi, ζj ]+〉 =


nk + 1

2 0 cr ci

0 nk + 1
2 ci −cr

cr ci nk + 1
2 0

ci −cr 0 nk + 1
2

 , (C.2)

where [ , ]+ is the anticommutator. Notice that (nk + 1
2 )2 − |ck|2 > 0 is a necessary

condition for the matrix to have positive eigenvalues.
The transformation Eq. (38) amounts to diagonalize this matrix:

C = MtT M , (C.3a)

T =
(

n̄k + 1

2

)
1 (C.3a)

The matrix T is the covariance matrix of the two thermal density matrices
ρ̂th, a ⊗ ρ̂th, b in Eq. (38). The matrix M is the product of two local transformations
and one global rotation R. The latter brings the covariance matrix C under a 2 × 2
bloc diagonal form. A product of local rotations R1(θ1) ⊕ R2(θ2) diagonalize each
bloc, and the product of local squeezing S1(r1) ⊕ S2(r2) brings the resulting matrix
under the form T . Explicitly one has

R(φ) =


cos φ 0 − sin φ 0

0 cos φ 0 − sin φ

sin φ 0 cos φ 0

0 sin φ 0 cos φ

 ,

R(θ ) =
(

cos θ sin θ

− sin θ cos θ

)
, S(r) =

(
er/2 0

0 e−r/2

)
, (C.4)

with the rotation angles φ = π/4, θ1 = θ2 given by tan 2θ = −ci/cr , and the
squeezing parameter r1 = −r2 defined by thr = −|ck|/(nk + 1/2).
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The eigenvalue n̄k of the thermal matrices is easily obtained by conservation
of the determinant:

det C =
((

nk + 1

2

)2

− |ck|2
)2

=
(

n̄k + 1

2

)4

.
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